If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+23n-180=0
a = 7; b = 23; c = -180;
Δ = b2-4ac
Δ = 232-4·7·(-180)
Δ = 5569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{5569}}{2*7}=\frac{-23-\sqrt{5569}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{5569}}{2*7}=\frac{-23+\sqrt{5569}}{14} $
| 0=(9/5)(c)+32 | | 2x=180-40 | | 3x+x+x+90+80=180 | | -2+3•x=38-x | | 10x+45=285 | | (−327)+456=456+x=x | | 0.25x+3(2x-6)=7 | | -x-2=+ | | 75−x=100 | | 2a–5=9 | | 5(x-8)-2x+6=2x-8 | | 14/x=2.5 | | T+4v=1 | | 6x²+60x+150=0 | | 8x=13x+9 | | 3b=−15 | | 1,8*x*2,6*x=24 | | 5.6-3(2-0.4x)=0.4(4x+1) | | 1.8x*2.6x=24 | | (14y+21)(1,8-0,3y)=0 | | 2x+6=5x+11 | | 9(b+16)=2 | | 3x+x+3x-8=58 | | ..x(-6)=-24 | | 10*x*x*x*x*x*x*x*x*x*x*x*x=700 | | 6(5x + 6) = 24(x + 3) | | 2^(m+1)=16 | | 7(h-2)=9-(h-17) | | 9=1n-12 | | -41n-32=-55n+10 | | 80=20-4c | | x-3=3x-11/x-3 |